
Ionic Aggregate Structure in Ionomer Melts: Effect of Molecular
Architecture on Aggregates and the Ionomer Peak
Lisa M. Hall,*,† Michelle E. Seitz,‡,⊥ Karen I. Winey,‡,¶ Kathleen L. Opper,§,# Kenneth B. Wagener,§

Mark J. Stevens,†,∥ and Amalie L. Frischknecht*,†,∥

†Computational Materials Science and Engineering Department and ∥Center for Integrated Nanotechnologies, Sandia National
Laboratories, Albuquerque, New Mexico 87185, United States
‡Department of Materials Science and Engineering and ¶Department of Chemical and Biomolecular Engineering, University of
Pennsylvania, Philadelphia, Pennsylvania 19104, United States
§Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States

*S Supporting Information

ABSTRACT: We perform a comprehensive set of coarse-grained
molecular dynamics simulations of ionomer melts with varying
polymer architectures and compare the results to experiments in
order to understand ionic aggregation on a molecular level. The
model ionomers contain periodically or randomly spaced charged
beads, placed either within or pendant to the polymer backbone,
with the counterions treated explicitly. The ionic aggregate
structure was determined as a function of the spacing of charged
beads and also depends on whether the charged beads are in the
polymer backbone or pendant to the backbone. The low wavevector ionomer peak in the counterion scattering is observed for all
systems, and it is sharpest for ionomers with periodically spaced pendant charged beads with a large spacing between charged
beads. Changing to a random or a shorter spacing moves the peak to lower wavevector. We present new experimental X-ray
scattering data on Na+-neutralized poly(ethylene-co-acrylic acid) ionomers that show the same two trends in the ionomer peak,
for similarly structured ionomers. The order within and between aggregates, and how this relates to various models used to fit the
ionomer peak, is quantified and discussed.

■ INTRODUCTION
Ionomer melts are polymers with a small fraction of charged
groups and no solvent, which have been identified as possible
battery electrolytes. Since the ionic groups (anions in this
paper) are bound to the chain, they cannot collect at the
electrode and interfere with the desired cation transport as can
anions in conventional electrolytes. However, currently
available ionomers are not conductive enough for battery
applications. Because the ions exist in a relatively low dielectric
polymer medium, their strong ionic attractions typically lead to
ionic aggregation. The ionic aggregates act as temporary cross-
links and lead to interesting mechanical properties but may
hinder counterion transport. A molecular-level understanding
of ionic aggregation and counterion dynamics, and their
dependence on controllable ionomer characteristics such as
polymer architecture, is needed to enable rational design of
conducting ionomers.
Ionic aggregate morphology is likely a key driver of both

mechanical and electrical properties but is difficult to explore in
detail experimentally. A common way to experimentally assess
ionic aggregate size and order is by measuring the low
wavevector peak in the X-ray scattering, caused by the
aggregates. The peak, called the “ionomer peak”, is typical of
many ionomers of widely varying chemistries.1 It is often fit

with the Yarusso−Cooper (YC) model or its more recent
version, the Kinning−Thomas (KT) model.1−5 These models
propose that spherical regions of increased ion density (the
aggregates) order like liquid-phase hard spheres with a radius of
closest approach that is larger than the ion dense regions
themselves, presumably due to steric hindrance from the
uncharged polymer associated with the aggregate. To either
bolster or refute the hypothesis of spherical aggregates for a
given system, scanning transmission electron microscopy
(STEM) can be used, but typically an image shows a 2D
projection of many overlapping aggregates.3,6−12 A microscopic
3D picture of ionic aggregate morphology which can show
liquid-like interaggregate order can presently only be obtained
in simulations. A major goal of the present work is to build a
clearer description of the various ionic aggregate morphologies
possible in simple dry ionomers and to relate morphology to
experimental scattering signatures.
Many important theoretical insights into aggregation, or

clustering, in polymer melts have already been made by
considering polymers with a small number of strongly
associating groups.13−18 The attraction between such groups,
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called stickers, may represent a screened ionic interaction or
strong chemical attraction such as hydrogen bonding. The
attraction is relatively short-ranged, which simplifies its use in
some theories and speeds up simulations versus long-range
Coulomb interactions. Typically, all stickers are attracted to all
other stickers, and there are no same-charge-like repulsive
interactions or “counterions” (although it is possible to treat
explicit counterions in certain theories of associating polymers,
and some initial calculations have been done).18 Associating
polymer studies are relevant to ionic aggregation in ionomers
because they consider the basic effects of strong enthalpic
interactions in the presence of polymer backbone connectivity
and entropic effects. However, the positive and negative
charges in ionomers can produce a local structure of alternating
charges, which is not reproduced by associating polymer
models.
Both linear polymers with stickers on the ends of the chain

(telechelics) and those with regularly spaced stickers in the
chain have been studied. Nyrkova and co-workers discussed
how clusters in ionomers are analogous to microdomains in
block copolymers composed of alternating nonattractive and
very short attractive blocks in what they define as the
superstrong segregation regime.15 Their free energy analysis
predicted that telechelics form the largest clusters and that
stickers placed randomly in the chain also form larger clusters
than periodically placed stickers. Further work suggested that
disk-shaped clusters may be preferred over spherical clusters.14

The polymer reference interaction site model has also been
applied to associating telechelic and periodically spaced
associating polymers.16−18 Both types formed dense clusters
of associating groups at low enough temperatures, and
telechelics clustered more strongly than the in-chain associating
groups. Intercluster liquid-like order was predicted. Molecular
dynamics (MD) simulations were performed on both melts and
thin films of telechelic and in-chain associating polymers. Both
types formed discrete, roughly spherical clusters, but again
telechelics formed stronger and larger clusters.13

Including both long-range Coulombic interactions and free
counterions in the dry ionomer model is crucial to under-
standing the detailed ionic aggregation behavior and charge
transport for battery applications. We note that most prior
simulations of ionomers including Coulomb interactions have
focused on hydrated ionomers for fuel cell applications, which
can form proton-conducting water channels.19,20 Different
types of network structures, based on different polymer
chemistries and architectures, are possible and lead to different
properties.21 It remains unclear what parallels can be drawn
between water-filled channels lined by ionic groups and dry,
purely ionic aggregates. Water is typically avoided in batteries,
and we discuss only dry ionomers in this paper. One group did
study a dry fuel cell membrane material with permanently
bound hydrogens (and no free counterions).22

A few coarse-grained MD simulations including explicit
counterions have also been performed. Goswami et al. studied
telechelic ionomers23 and found disk-like ionic aggregates at
low temperature. Based on the associating polymer work
showing stronger aggregation in telechelics and because
telechelics typically have a low fraction of ionic groups,
periodically or randomly spaced ionomers seem more likely
candidates for battery applications. Early simulations of
ionomers with periodically spaced charged beads in the chain
backbone (ionenes) showed the ions apparently percolated
through the small simulation box at low temperatures.24

In previous work,25 we performed coarse-grained MD
simulations with two different ionomer architectures: periodi-
cally spaced ionenes and ionomers with charged beads placed
pendant to the polymer backbone (pendants). The ionene
system formed a percolated ionic structure at low dielectric
constant, while the pendant ionomers instead formed discrete,
roughly spherical aggregates. Only one periodic spacing was
considered. The system size was large enough to resolve the
average aggregate size and interaggregate ordering.25 Both
pendants and ionenes showed a significant ionomer scattering
peak, although it was much more intense for pendants. For the
pendant architecture, the aggregates’ center-of-mass to center-
of-mass structure factor revealed liquid-like interaggregate
ordering corresponding to the ionomer scattering peak, as
proposed by YC-type models. Increasing the dielectric constant
was shown to decrease the aggregate size and the local and
long-range order. We concluded that our coarse-grained model
captures the most important aspects of ionomer physics leading
to the ionomer peak, and that a small change in architecture can
yield qualitatively different ionic aggregate morphologies.
Recent experimental advances have allowed synthesis and

extensive characterization of similar ionomers with a variable
precise or random spacing of ions along the chain.4,26 The
precise materials have a much stronger ionomer scattering peak
than randomly spaced analogues, indicating a high degree of
interaggregate order, and analysis of STEM micrographs
suggests the aggregates are discrete spheres.4,26 Such simply
constructed and highly ordered materials are ideal for clear
comparisons with simulations, and these experiments partially
motivated both our prior work and this study.
In this paper, we present new precise and random Na+-

neutralized poly(ethylene-co-acrylic acid) (PEAA) ionomer X-
ray scattering data and compare these to simulated structure
factors. Having studied the effect of dielectric constant in prior
work, here we focus on the effects on ionic aggregate
morphology of (1) varying the spacing between charges and
(2) randomness in the spacing. To better understand the range
of possible ionic aggregate morphologies and their relationship
with scattering profiles, we simulate both ionene and pendant
architectures and add randomness in spacing in two different
ways. The pendant ionomers’ structure factors compare
favorably with experimental scattering profiles: both show
that increasing the spacing of periodic ionomers moves the
ionomer peak to a lower wavevector, and that adding sequence
randomness broadens the peak and also moves it to a lower
wavevector. We first summarize the experimental and
simulation methods. The Results section details our real-
space and then Fourier-space structural results, including
specific comparisons between the simulated and experimental
ionomer peaks. The Discussion section explains the results
further in the context of prior theoretical and experimental
work.

■ EXPERIMENTAL METHODS
Materials. Linear PEAA copolymers with either precise or

pseudorandom acid spacing were synthesized via ADMET and
ROMP techniques, respectively. Details of their synthesis and
characterization have been previously described.26 They are shown
schematically in Figure 1. We denote these polymers p9AA, p15AA,
and r15AA to explain the placement of the acetic acid (AA) groups;
these names start with a p to denote precise or an r for pseudorandom
spacing, then have the number 9 or 15 to denote the average number
of backbone carbons per COOH group. The neutralized samples
discussed below are further denoted with -Y%Na, where Y is the mol
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% neutralization determined from elemental analysis as given in Figure
1, and Na is the counterion label.
General Neutralization Procedure. The same solvent system

was used to solubilize each PEAA acid polymer. Similar precipitation
neutralization procedures were followed, yielding similar observations
for all sodium ionomers. With p9AA (polymer a in Figure 1) as the
representative example, in a dry single-neck round-bottom flask the
p9AA was weighed (50 mg, 0.29 mmol), sealed with a septum, and
dissolved with a 1:4 mixture of 1,4-dioxane and 1-butanol (15 mL)
under nitrogen. A magnetic stir bar was added, and complete
dissolution was obtained upon heating at 90 °C for 3 h. During that
time, the sodium acetate salt (12 mg, 0.15 mmol) was weighed under a
dry and inert atmosphere and then dissolved in a 1:2 mixture of 1,4-
dioxane and 1-butanol (7.5 mL). For complete dissolution, a small stir
bar was added and the vial was closed prior to heating to 90 °C for 30
min. The round-bottom flask was then outfitted with an addition
funnel. The salt solution was added to the addition funnel and added
dropwise into the vigorously stirring polymer solution at 90 °C.
Cloudiness was observed upon partial addition. After the solution was
stirred for 3 h at 90 °C and cooled to room temperature, the fine
precipitate coagulated into larger pieces. The sodium ionomer slurry
was cooled on ice prior to filtration of polymer p9AA-33%Na. The
precipitate was filtered and dried at 80 °C overnight. The extent of
neutralization achieved from the solution neutralization procedure was
determined by inductively coupled plasma elemental analysis
performed by Galbraith Laboratories (Knoxville, TN) on samples
with masses ranging from 5 to 21 mg. The error is estimated at ∼7% in
the reported mol % neutralization.
X-ray Scattering. The samples were melt-pressed at 150 °C

between sheets of polytetrafluoroethylene in a Carver 4122 hot press.
Pressing resulted in the formation of uniform films for all samples. All
samples were subjected to rapid cooling (∼8 °C/min) in the press by
flowing tap water. For X-ray scattering studies, samples were loaded
into 1.0 mm diameter glass capillaries (Charles Supper Co. Special
Glass 10-SG) which were then flame-sealed. The X-ray scattering
apparatus consists of a Nonius FR591 rotating-anode generator
operated at 40 kV × 85 mA, pinhole focusing optics, an evacuated
flight path, and a Bruker HiSTAR multiwire two-dimensional detector.
Data were acquired at a sample−detector distance of 7 cm,
corresponding to a k range of ∼2−18 nm−1 (we denote wavevector
as k throughout this paper; experimentally, k = (4π/λ)sin θ). 2D data
reduction, analysis, and curve fitting were performed using Data-
squeeze software.27 Sample-filled capillaries were loaded into a
Linkham oven, and the temperature was controlled via a Linkham
TMS 94 temperature controller. Samples were heated at 10 °C/min
from room temperature to 118 °C and held at least 5 min prior to data
collection to ensure thermal equilibrium was achieved. Data were
collected for 1 h. An empty capillary was run under the same
conditions and used for background subtraction. Distance calibration
was done using silver behenate. Near the edge of the detector there is
∼5% error in the peak position; therefore, the absolute peak positions
have some distortion, but the relative shifting between samples is
reliable.

■ SIMULATION METHODS
We use the coarse-grained bead−spring polymer model of
Kremer and Grest.28 Adjacent polymer beads are bonded by

the finitely extensible nonlinear elastic (FENE) potential with a
spring constant of k = 30ε/σ2 and maximum extent of R0 =
1.5σ:28,29
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polymers “ionenes” and “pendants”, respectively. An equal
(neutralizing) number of counterions of opposite charge are
explicitly added. All polymer beads and counterions interact
with the repulsive part of the Lennard-Jones (LJ) potential,
with εLJ = 1.0, shifted to zero at its minimum:

=
ε

σ
−

σ
+ ≤

>

⎜ ⎟ ⎜ ⎟
⎧
⎨
⎪⎪

⎩
⎪⎪

⎡
⎣
⎢⎢
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥

U r

r r
r r

r r

( )

4
1
4

;

0;

LJ

LJ
LJ

12
LJ

6

c

c (2)

where σLJ is the LJ diameter, εLJ = 1.0 is the LJ unit of energy, r
is the distance between two beads, and the cutoff distance rc =
21/6σ. The LJ diameter of all polymer beads is σ = 1.0, the
distance unit in which we report most of our results. Most
systems studied included counterions of LJ diameter σci = 0.5σ,
but the counterion diameter σci = 1.0σ was also considered (the
latter are discussed further in the Supporting Information). The
bead−counterion LJ interaction is additively mixed. Counter-
ions and charged beads have charges of +1e and −1e,
respectively, and experience a long-range Coulomb potential
as described below. A Langevin thermostat with damping
constant of 1.0 and a reduced temperature of T* = kT/εLJ = 1.0
is used in all simulations, where kT is the thermal energy. All
beads and counterions have unit mass. The LAMMPS30 MD
program31 was used to perform the simulations, including its
implementation of the particle−particle particle-mesh method
to account for long-range electrostatics.32

The strength of the Coulombic interaction between two
beads with charges q1 and q2 is set by the dielectric constant of
the medium, εr:

=
πε ε

U r
q q

r
( )

4C
1 2

0 r (3)

where ε0 is the vacuum permittivity. At constant temperature, εr
is inversely proportional to the Bjerrum length, lB = e2/
(4πε0εrkT), defined as the distance at which the Coulomb
interaction equals kT, where e is the elementary charge. In our
simulations, the dimensionless quantity σ/lB was varied from
0.028 to 0.070 in increments of 0.014. To translate e into our LJ
unit system or report the εr of the medium from the
dimensionless σ/lB requires a choice of σ and temperature in
real units. Each uncharged polymer bead maps to approx-
imately three CH2 units in a polyethylene backbone,28 so we
choose the average bond length of a FENE bond, 0.97σ, to
approximate the distance covered by three C−C bonds along
the backbone, yielding σ = 0.4 nm. At room temperature the σ/
lB range used then corresponds to εr = 4−10. This εr accounts
for all parts of the dielectric constant (including the
polarizability of all atoms and partial charges which would be
on each atom in a fully atomistic model) that are not due to
fluctuations in the locations of ions, the part which is included

Figure 1. The three experimental polymers before neutralization and
the percent of COOH groups that were neutralized: (a) p9AA, (b)
p15AA, and (c) r15AA, where x/y = 0.88.

Journal of the American Chemical Society Article

dx.doi.org/10.1021/ja209142b | J. Am. Chem.Soc. 2012, 134, 574−587576



in our model. Without ionic groups, εr ranges from ∼2 for
polyethylene to ∼10 for poly(ethylene oxide), but adding
polarizable ionic groups and counterions should contribute
more to the dielectric constant than is accounted for by the
motion of the unpolarizable charges themselves. A priori, we
would expect that an εr somewhat greater than 2 would best
represent an experimental polyethylene-based ionomer, de-
pending on the fraction of groups with larger polarizabilities. As
explained in our prior letter,25 the glass transition of our model
system is between εr = 2 and 4, and we therefore focus on εr =
4 (lB/σ = 36), which allows equilibration of the system but also
shows strong ionic aggregation. Our mapping of three CH2
units or 0.4 nm to a polymer bead also suitably corresponds
with the size of a COO− group.33 The counterion diameter
0.5σ maps well to the ionic diameter of Na+ of ∼0.2 nm. The
system packing fraction ηt = (ρciσci

3 + ρBσ
3)π/6 was set to 0.7π/

6 = 0.366, in the range typical of polymer melts, where ρ
represents number density and the subscripts ci and b stand for
counterions and polymer beads, respectively.
We vary the number of backbone beads per charged bead,

Nbb. The periodically spaced pendant systems with Nbb = 3, 5,
and 7 resemble the experimental precise PEAA copolymers
with 9, 15, and 21 backbone carbons between acetic acid
groups, if they were fully neutralized with Na+. We also study
the longer spacings of Nbb = 9 and 11. The charged beads are
placed in the middle of the periodic repeating unit such that
charged beads are never on the ends of the chain (analogous to
the experimental precise ionomers). For the periodic spacings
of Nbb = 3 and 9, there are a total of 36 backbone beads per
chain. In the case of the periodic spacings of Nbb = 5 and 7,
there are 35 backbone beads per chain, while there are 44
backbone beads per chain for the periodic spacing of Nbb = 11.
This yields a molecular weight of ∼2 kg/mol after mapping to a
PEAA polymer, which is 1−2 orders of magnitude smaller than
the experimental molecular weight.26 We expect that the
behaviors of interest here such as ionic aggregate morphology
are not affected significantly by molecular weight. Our chain
length allows us to equilibrate more easily and stay below the
entanglement length. The entanglement length of Kremer−
Grest model polymers at a higher density (ρσ3 = 0.85) and with
no charges has been reported to either be similar to28 or longer
than34 our polymers’ length, so at our lower density we do not
expect any significant entanglement effects.
We approximate fully random linear copolymers by placing

charged beads (of various total concentration) randomly along
the backbone of the chain such that all backbone beads in the
box have the same probability of being charged (for ionenes) or
having an attached charged group (for pendants). These fully
random ionomers each have 36 backbone beads, though the
particular sequences of and total number of charges on each is
random. The charged groups can be adjacent to each other and
can be at the end of the chain.
Randomness in acid group spacing was also added in a

blocky fashion to create materials roughly analogous to
experimentally synthesized pseudorandom copolymers. The
pseudorandom experimental copolymers were synthesized by
ring-opening metathesis in which cyclic monomers with and
without a COOH group were copolymerized, yielding COOH
groups which were not precisely spaced but which were never
placed on the ends of the polymer nor closer than seven
backbone carbons apart.26 Similarly, our random block
copolymers are created from blocks of three backbone beads
each (which maps to nine backbone C−C bonds). Each block

may be uncharged or have a charged bead in the middle (for
ionenes) or pendant to the middle bead (for pendants). The
charged and uncharged blocks are linked in a random order to
create chains of different sequences of 36 backbone beads each;
simulations are performed for various average ratios of charged
to uncharged blocks. Fully random polymers are created with
an average of Nbb = 3, 5, 7, or 9 backbone beads per charged
bead. Random block ionomers are created with Nbb = 5, 7, or 9
(at Nbb = 3 this random block model would be composed of
only charged blocks and thus would no longer be random).
Different types of architectures of the simulated ionomers are
shown schematically in Figure 2.

Unless otherwise noted, the simulation box contained 800
polymers, and polymers and counterions were placed in the box
randomly and equilibrated for 107 time steps of 0.005τ, where τ
= (mσ2/εLJ)

1/2 is the dimensionless time unit. The simulation
was then performed for 107 time steps or more, during which at
least 100 snapshots (equally spaced in time) were saved and
analyzed. All reported properties (other than images and the
mean squared displacement) are averaged over these snapshots
unless otherwise noted.
The mean squared displacement (MSD) of the polymer

centers of mass and of the counterions was calculated after
subtracting the small total system center of mass displacement.
For both ionenes and pendants, fewer ions (larger Nbb) leads to
slower dynamics. Of all systems discussed here, the smallest
MSD during the main data collection period of 107 time steps
was for the pendant ionomers at Nbb = 11, εr = 4, and σci = 0.5.
Its polymer center-of-mass MSD = 8.9σ2, somewhat less than
the polymer mean squared radius of gyration Rg

2 = 12σ2 for this
system, and its counterion MSD = 38σ2 by the end of the
original simulation time. Most systems moved significantly
faster, with the largest MSDs at εr = 4 being 120σ2 for the
polymer centers of mass and 1800 σ2 for counterions, for the
case of periodic ionenes at Nbb = 3. During the prior
equilibration period (after a standard soft potential was used
to push any overlapping beads off of each other and before data

Figure 2. Schematics of simulated polymers with uncharged polymer
beads in green, charged polymer beads in blue, and counterions in red:
(a) periodic pendants with Nbb = 3, (b) periodic pendants with Nbb =
5, (c) random block pendants where the X and Y units are combined
randomly and X + Y = 12 for each chain (X/Y = 2/3, 4/3, and 2
correspond to Nbb = 5, 7, and 9, respectively), (d) periodic ionenes
with Nbb = 3, and (e) fully random pendants where X + Y = 36 for
each chain (X/Y = 2, 4, 6, and 8 corresponds to Nbb = 3, 5, 7, and 9,
respectively). Polymers a−c here are analogous to fully monovalent-
neutralized ionomers based on the acid copolymers of Figure 1a−c.
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collection), the polymer center-of-mass MSD for all systems
was already greater than Rg

2, presumably because the polymers
initially moved slightly faster from the random initial
configuration toward a more favorable configuration. This
suggests that most effects of the initial configuration were
erased before data collection began. As another measure of the
relaxation from the initial configuration, we calculated the decay
of the average polymer end-to-end vector autocorrelation over
the equilibration period for the εr = 4, σci = 0.5 systems. For all
but the slowest system, the average polymer end-to-end vector
autocorrelation function (normalized to 1 at time 0) had
already decayed to less than 1/e before data collection. For the
slowest system (periodic pendants at Nbb = 11), starting from
the initial configuration, this autocorrelation function had not
yet reached 1/e by the start of data collection and remained
above 1/e for the first quarter of the main data collection
period.
Even for the slowest systems, the change in the partial pair

correlation functions gij(r) over the simulation time is negligible
on the scale of the figures presented here. Several of the slower
systems were simulated further for 2−7 times the initial
simulation time, and the change in gij(r) over this time was
extremely small. Note that the simulation time in this broader
study is a quarter of that used in our prior work.25 While little
difference in structure is found with longer simulations, the
longer time simulation data will be extensively analyzed to
better explore the long time dynamics in a future publication.
Here we focus on structural properties of the ionic aggregates

and on comparison of the simulation structure factors to
experimental data. Partial pair correlation functions were
calculated using the visualization software VMD35 that was
also used to create images.36,37 Partial structure factors Sij(k) =
δij + ρihij(k) were calculated from a Fourier transform of hij(r) =
gij(r) − 1. Clusters, or ionic aggregates, were defined by
grouping any oppositely charged ions within a distance of 0.9σ
of each other into the same aggregate. The aggregates’ centers
of mass, principal moments of inertia, size (total number of
cations and anions in the aggregate), and spatial extent were
recorded, and from the positions of the centers of mass,
gCM−CM(r) and SCM−CM(k) were calculated. We include the
small number of “clusters” of size 1 in the cluster analysis
results except for the moment of inertia calculation. Finally, the
polymers’ radius of gyration tensors and average Rg

2 were
calculated; except for the slightly longer chain Nbb = 11
polymers, Rg

2 was between 9.5 and 10.7σ2 for all architectures
studied with σci = 0.5.

■ RESULTS
Real-Space Structure. Simulated Ionic Aggregate

Morphology. Ionomers of all architectures formed ionic
aggregates. Previously, we presented snapshots of a pendant
and ionene system to show the discrete aggregates in the
pendant case versus the large percolated ionic structure in the
ionene case at Nbb = 9 and εr = 4.25 As a first view at the effect
of randomness in spacing on the real space structure of the
ionic aggregates, we compare periodic, random block, and fully
random ionenes and pendants at Nbb = 9 and εr = 4 in Figure 3.
Only the charged beads and counterions are shown, and they
are colored by size to delineate the different distinct aggregates.
For each of the ionene systems, a percolated aggregate spans
the simulation box in three dimensions and is colored
transparent yellow. The center of mass of each discrete
aggregate is in the periodic box and these aggregates are each

drawn contiguously (not broken by the periodic boundary).
Visually, the periodic and random ionene systems appear to be
relatively similar to each other, and their aggregates are locally
thin and stringy. Changing from periodic to random spacing of
charged pendant beads instead qualitatively changes the
pendant systems’ aggregate morphology. The periodic pendant
system shows discrete, roughly spherical aggregates with a
relatively narrow size distribution. The random block and fully
random pendant systems also have discrete aggregates, but with
a much wider range of aggregate sizes. The smaller aggregates
of the random pendant ionomers are roughly spherical, while
the larger aggregates are more extended and resemble short
thick strings of a similar width as the more spherical pendant
ionomer aggregates. Percolated ionic structures are typically
assumed to provide increased conductivity of ions through the
sample. Our preliminary calculations show that the counterion
diffusion constant is larger for most of our percolated systems
than for most of our nonpercolated systems, but we defer a
more detailed analysis of the counterion dynamics to a future
publication.

Figure 3. Snapshots of various architectures of ionomers with Nbb = 9,
σci = 0.5, and εr = 4: (a) periodically spaced ionenes, (b) periodically
spaced pendants, (c) random block spaced ionenes, (d) random block
spaced pendants, (e) fully randomly spaced ionenes, and (f) fully
randomly spaced pendants. Only counterions (smaller spheres) and
charged beads (larger spheres) are shown (uncharged polymer beads
are invisible). Based on our cluster analysis results, aggregates are
either percolated (shown in transparent yellow) or discrete. Discrete
aggregates are colored from red to white to blue in order of increasing
number of ions in the aggregate, where the pure red and blue
aggregates are more than 1 standard deviation away from the average
size for their system.
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The counterion−counterion structure factors of these
systems shown in Figure 3 are given in Figure 4. Interestingly,

the various architectures of ionomers, which show qualitatively
different ionic aggregate morphologies, all yield a strong
ionomer peak at low wavevector with a small shoulder to the
right of the peak. Ionenes have a less intense ionomer peak than
pendants, and their peak’s shoulder is at a higher wavevector.
Changing from a periodic to random spacing of charged beads
broadens the ionomer peak and shifts it to lower wavevectors.
(These statements are for Nbb = 9; see further discussion of the
ionomer peak height and location below.)
The cluster analysis results for all εr = 4, σci = 0.5 systems are

summarized in Figures 5 and 6. Figure 5 shows the fraction of
ions involved in aggregates which span the box in at least one
dimension, fspan. For all systems at Nbb = 3, due to the large total
concentration of ions, nearly all ions are in a large percolated
structure which crosses the box in all three dimensions. As the
ion concentration is lowered by increasing Nbb, fewer ions are
in box-spanning aggregates, and some of the spanning
aggregates cross the box in only one or two dimensions. For
periodic ionenes at Nbb = 11, an aggregate percolates through
the box in 3D in less than half of the snapshots. For periodic
and random pendants at Nbb = 9 or larger, hardly any
aggregates span the box. Overall, aggregates in ionene systems
more easily percolate than those of pendants, and aggregates in
the random types of ionomers percolate more easily than in
periodic ionomers. Figure 6 gives the average size of aggregates
(in number of ions per aggregate) which do not span the
simulation box. At low Nbb or for most ionenes, these discrete
aggregates are small and relatively rare, though they become
more common and larger with increasing Nbb. For periodic
pendants at Nbb = 7, 9, and 11, no ionic structures span the box
and the aggregates’ average size slightly decreases with Nbb. For
these systems only, there is a relatively narrow size distribution
of aggregates and the standard deviation in aggregate size is
significantly smaller than the average aggregate size (a table of
the standard deviation in nagg is included in the Supporting
Information). Both random block and fully random pendants at
Nbb = 9 rarely have an aggregated structure larger than the box.
However, the random pendants’ discrete aggregates are much
larger than those of the periodic pendants, as seen in Figure 3.

To quantify the shape of the aggregates, we calculated their
average shape anisotropy ⟨κ2⟩. Many different metrics can be
calculated to quantify average polymer or cluster shape.13,38−41

We use ⟨κ2⟩ which varies simply from 0 for spheres to 1 for
straight rods. ⟨κ2⟩ can be calculated from the eigenvalues of the
radius of gyration tensor or from the (closely related if all
polymer or cluster units have equivalent mass) eigenvalues of
the moment of inertia tensor, λ1, λ2, and λ3, also known as the
principal moments of inertia, using eq 4.38,39

κ = −
λ λ + λ λ + λ λ

λ + λ + λ
4 12

( )
2 1 2 1 3 2 3

1 2 3
2

(4)

The average aggregate shape anisotropy (excluding box-
spanning aggregates and singlets) is lower for the periodic
pendant systems at Nbb = 7, 9, and 11 than for all other
architectures at εr = 4 and σci = 0.5. The systems where
extremely few of the aggregates span the box (such that almost
all ions are included in the measure of average shape
anisotropy) are periodic pendants at Nbb = 7, 9, and 11 (⟨κ2⟩
= 0.34, 0.26, and 0.23, respectively), random block pendants at
Nbb = 9 (⟨κ2⟩ = 0.43), and fully random pendants at Nbb = 9
(⟨κ2⟩ = 0.49). For periodic ionenes at Nbb = 11, only 18% of
ions participate in box-spanning aggregates, and for other
nonsinglet aggregates, ⟨κ2⟩ = 0.46. At the increased εr = 6, there
were no box-spanning aggregates in our simulations of periodic

Figure 4. Counterion−counterion structure factors of ionene (dashed
lines) and pendant (solid lines) ionomers at Nbb = 9 having periodic or
random spacings as noted in the legend, with σci = 0.5 and εr = 4.

Figure 5. Fraction of ions in aggregated structures which span the
simulation box for (a) ionene and (b) pendant ionomers as a function
of spacing at σci = 0.5 and εr = 4. The charged bead spacing is periodic
(square data points), random block (circles), or fully random
(triangles).
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ionenes and pendants,25 and ⟨κ2⟩ is lower for pendants (0.45)
than for ionenes (0.57). The Supporting Information gives ⟨κ2⟩
for all systems. As observed in the snapshots presented above,
these values of ⟨κ2⟩ show unambiguously that the periodic
pendant architecture yields more spherical aggregates than
random pendants and periodic ionenes.
Pair Correlation Functions. The ion−ion partial pair

correlation functions reveal the averaged ion structure in real
space. In Figures 7 and 8, we present results for ionenes and
pendants at a short and long spacing of charged beads to show
the effects of the pendant architecture and spacing. The
charged bead−counterion correlation function (Figure 7) has a
sharp peak around 0.75σ, the distance of charged bead−
counterion contact (at which the LJ repulsion ends). Other
short-range peaks depend on the ionomer type. All gcb−ci except
that of ionenes with a short spacing have a broad, long-range
peak between ∼4 and 7σ. As we discussed in our prior work25

and further explain below, this peak corresponds to the
mesoscale order which exists either within large percolated
aggregates or between distinct aggregates. Both the short- and
long-range order is stronger at longer spacings (lower ion
content) and stronger for pendants than for ionenes.
Similar trends are found for the counterion−counterion pair

correlations in Figure 8a for periodic ionene and pendant
ionomers. In this case, the first and second peaks are at 1.1σ ≈

√2(0.75σ) and 1.4−1.5σ ≈ 2(0.75σ), which corresponds to
the distances between like charges in a flat quadrupole of ions
and in a linear chain of four ions, respectively. The second peak
is relatively more prevalent for ionenes than for pendants,
suggesting that ionenes’ aggregate structures may be more
extended locally while pendants may form more compact
structures. For Nbb = 3, beyond these first peaks are further
small oscillations at σ ≈ 2−4 in approximately opposite
locations in gcb−ci and gci−ci. Similar but more prevalent
oscillations were observed in prior simulations of a model
similar to our ionenes at Nbb = 2, and simply correspond to
molten NaCl-like charge ordering.24 They are less prevalent at
higher Nbb. The long-range peak of Figure 8a is similar to that
in the charged bead−counterion correlations in Figure 7.
Parts b and c of Figure 8 are analogous to Figure 8a for the

random block and fully random models, respectively. The local
ordering peaks generally become more intense going from
periodic to random block to fully random spacing. Adding
randomness in either fashion greatly decreases the long-range
peak in gci−ci(r). For random pendants at both short and long
spacing, the long-range peak is still visible but is moved to even
larger r. The snapshots of Figure 3 visually show the relative
similarity in the local order and significant variation in long-
range order of the Nbb = 9 ionomers of different architectures.

Scattering and Structure Factors. Experimental Com-
parison. Due to the difficulty of directly measuring the real
space structure, the averaged ionic aggregate structure is
typically probed by scattering experiments. The low wavevector
scattering peak is a measure of the size and mesoscale order of
ionic aggregates. Our coarse-grained model is meant to capture
the basic results of strong ionic interactions in the presence of
the constraints imposed by the polymer backbone, and shows a
strong ionomer peak.25 To further confirm the experimental
relevance of our model, we compare the experimental X-ray
scattering to simulation results. As discussed above, the precise
and pseudorandom PEAA copolymers neutralized with Na+

correspond to our simulated pendant ionomers at σci = 0.5,
where one bead represents three C−C bonds. The
experimental materials were partially neutralized with Na+ but
still contained many COOH groups which are potentially
dimerized with each other or involved in aggregates. However,
we do not attempt to consider the detailed local chemistry with

Figure 6. Average aggregate size (number of ions per aggregate) for
aggregates which do not span the simulation box for (a) ionene and
(b) pendant ionomers as a function of spacing at σci = 0.5 and εr = 4.
The charged bead spacing is periodic (square data points), random
block (circles), or fully random (triangles).

Figure 7. Charged bead−counterion partial pair correlation functions
for periodic ionene (dashed lines) and pendant (solid lines) ionomers
at Nbb = 3 and 9, σci = 0.5, and εr = 4. The global maximum of each
function is noted in the legend.
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our coarse-grained polymer model. Instead we simulate only
fully neutralized ionomers. Related experiments on precise
Zn2+-neutralized PEAA ionomers showed relatively little
change in ionomer peak location with increasing neutraliza-
tion.4

The experimental curves in Figure 9a present the total
scattering of all atoms of the PEAA copolymers, partially
neutralized with Na+, as drawn in Figure 1. The low wavevector
ionomer peak is attributed to scattering between the aggregates

which have an increased electron density from Na+ and from
the oxygens in the COO− groups. The higher wavevector
amorphous halo arises from the local liquid-like packing of the
polymer. The relative heights of the ionomer peaks are not
exact, since the experimental data are not in absolute intensity
units. Instead, all curves have been matched in intensity at a
point in the amorphous halo and at a point in the trough before
the halo, so if these polymer architectures have significant
differences in their amorphous halos, then the relative heights
of their ionomer peaks as shown here would not be reliable. We
expect that the amorphous halos, set by the polyethylene
backbone, are likely similar for these materials, but we do not
base our conclusions on the relative heights of the experimental
ionomer peak. We note that polyethylene crystallites are
expected in these types of materials at low temperatures, but to
avoid this complication the materials were held at 118 °C
during the X-ray scattering, and scattering features of crystallites
are not present.
From the simulation we calculate the partial structure factors,

which can be weighted by the scattering lengths of the atoms
that each bead represents and added together to obtain an
estimate of the total scattering. Because our mapping of beads
to atoms is approximate and all ion−ion partial structure factors

Figure 8. Counterion−counterion partial pair correlation functions for
ionene (dashed lines) and pendant (solid lines) ionomers with σci =
0.5, and εr = 4 and (a) periodic spacings Nbb = 3 and 9, (b) random
block spacings Nbb = 5 and 9, and (c) fully random spacings Nbb = 3
and 9. The global maximum of each function is noted in the legend.

Figure 9. (a) Experimental scattering data for p9AA-33%Na (squares),
p15AA-34%Na (circles), and r15AA-28%Na (triangles). (b) Simu-
lation counterion−counterion partial structure factors for fully
neutralized pendant ionomers of analogous architectures to (a), with
σci = 0.5 and εr = 4. The charged bead spacing is periodic with Nbb = 3
(squares) or Nbb = 5 (circles), or random block with Nbb = 5
(triangles).
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have a similar ionomer peak (the location and shape of the
ionomer peak is similar for the total or individual structure
factors), we simply present the counterion−counterion
structure factors in Figure 9 b, converted to nm−1 using σ =
0.4 nm, for the systems analogous to the experimental
ionomers as shown in Figure 2. Because the polymer backbone
scattering is not included, the amorphous halo of experiments
and the counterion−counterion local ordering peak of the
simulations should not be compared, and we note that even the
backbone bead−backbone bead structure factor of a coarse-
grained model would not be expected to precisely match that of
an atomistic or experimental system.
Figure 9 shows that the major experimental trends of the

ionomer scattering peak match the simulations. Our physically
motivated mapping of the bead size to nanometers places the
simulated ionomer peak in approximately the same place as the
experimental peak. For precise materials, increasing the spacing
between ions along the chain moves the peak to lower
wavevector. In other words, a longer spacing leads to a longer
length scale of real-space order. Experiments and simulations
also show the same effect of randomness at constant mean
spacing. Moving from the experimental precise to pseudoran-
dom materials or from the simulation periodic to random block
models broadens the ionomer peak and moves it to a lower
wavevector.
Ionomer Peak Trends. Figures 10 and 11 show the ionomer

peak height and its wavevector location, respectively, for all εr =
4, σci = 0.5 systems. Sci−ci(k) is composed of discretely spaced
points, the largest of which is considered to be the peak height.
This gives an error of several percent for the sharper peaks
depending on whether the peak location coincides closely with
a discrete point; however, a more complex analysis of the shape
of the peak and its exact maximum was not necessary to discuss
the trends of interest here. The most intense ionomer peaks are
for systems with roughly spherical aggregates: the periodic
pendants at Nbb = 7, 9, and 11. Even the other pendant systems
with large stringy or percolated aggregates have more intense
peaks than the analogous ionenes. At constant average spacing,
adding blocky randomness decreases the peak height for
pendants but does not appreciably change the ionene peak
height. Interestingly, when the ions are percolated (ionenes and
low Nbb pendants), changing from a periodic to fully random
spacing increases the ionomer peak height, while the opposite is
true for systems with discrete aggregates (high Nbb pendants).
The peak locations (Figure 11) of both ionene and pendant
random materials are relatively similar to each other and lower
than those of periodic systems, suggesting that adding
randomness in the molecular architecture increases the length
scale of mesoscale order. The precise ionenes at low Nbb have
the highest peak location or shortest length scale of real space
order, and their ionomer peak moves to lower wavevectors with
increasing Nbb. The pendant peak also moves to lower
wavevector with increasing Nbb, although to a lesser extent.

■ DISCUSSION
Shape and Size of Aggregates. In the simulations we

observe dense ionic aggregates that are relatively small and
roughly spherical for some systems and are large (sometimes
percolated through the box), more extended, and stringlike for
others. A general rule across all systems is that very large
aggregates are extended rather than spherical. Consider a
perfect cube of ions that is three ions wide in an NaCl
arrangement with a counterion in the center. Such a structure

could form for the pendant systems with each charged bead on
the outside of the crystal such that the backbone to which it is
bonded is outside of the crystal. Although more ions could be
added to some of the facets, the crystal cannot grow another
complete layer in all directions because of the neutral backbone
beads occupying sites in the lattice. For the case of ionenes,
making even a three ion wide crystal requires a sharp bend in
the backbone near at least six charged beads on the faces, which
is possible in our freely jointed model but will have an entropic
cost. This may explain why ionenes are less likely to form
roughly spherical aggregates than pendants and instead form
thinner stringy structures. Considering dense ion-only
aggregates as found in our simulations, if the aggregates are
significantly larger than about 33 = 27 ions, they must extend in
one or two dimensions and be one or two ions wide in the third
dimension (although this disklike or stringlike structure could
be bent or branched). Note that this is simply a geometric
argument; in our simulations the ions are not exactly in an
NaCl arrangement. Even aggregates of size 27 (which are
unusual because most aggregates are charge neutral) or 28 are
rarely observed in near-perfect cubelike 3 × 3 × 3
configurations. For the most closely spherical aggregate system
(lowest ⟨κ2⟩), precise pendants at Nbb = 11, the average
aggregate size is 28 ions. The largest aggregates in this and the
other roughly spherical aggregate systems do appear more
stringlike, as seen in Figure 3b. Interestingly, when comparing

Figure 10. Height of the ionomer peak in Sci−ci for (a) ionene and (b)
pendant ionomers as a function of spacing at σci = 0.5 and εr = 4. The
charged bead spacing is periodic (square data points), random block
(circles), or fully random (triangles).
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aggregates of the same size, they are relatively similar across all
architectures of pendants or across all architectures of ionenes.
Ionenes and pendants differ in that the ionene aggregates
become more extended or less spherical at smaller aggregate
sizes; the snapshots in Figure 3 and in our prior work25 show
that extended pendant aggregates often have a cross section of
about four ions, while ionenes’ aggregates more often have a
cross section of two ions. Comparing ⟨κ2⟩ of aggregates of
exactly size 28 across several different architectures shows that
aggregates of this size are relatively more spherical for various
types of pendants than for ionenes (values are tablulated in the
Supporting Information).
Simulations of at least two related systems have also shown

spherical or globular clusters. Ayyagari et al. simulated polymers
with two sticky groups each either within or at the ends of the
chain, and both architectures formed roughly spherical
clusters.13 The former architecture would be similar to a
short version of our Nbb = 7 ionenes if the associating groups
had been charged beads instead of stickers (and if counterions
were included). The average cluster size for these systems was
13 stickers. Although our most closely related systems (periodic
ionenes at Nbb = 7) were percolated, this number is not too far
from the average of ∼20 charged beads (∼40 ions total) per
cluster for the spherical aggregate forming Nbb = 7 periodic
pendants. Allahyarov et al. considered dry Nafion-like ionomers

with permanently bound hydrogens rather than free counter-
ions.22 The acidic groups interacted through a dipole−dipole
attraction, an additional Yukawa-type attraction, or both. Some
systems showed a peak in the structure factor apparently
corresponding to the ionomer peak, and the added attraction
could cause dense globular clusters to form, although average
cluster sizes were not discussed.
Recognizing that spherical clusters cannot grow large in 3D if

composed of short ionic segments, some authors have
suggested that a cluster may be a (uncharged polymer filled)
spherical shell, a core surrounded by polymer, and then a
spherical shell, or a flat disk.1,14 The shell configurations do not
seem likely in a system such as ours and were not observed.
Considering dense ion packing as observed in our systems, the
shell would have to be one or two ions thick. If it were two ions
thick, the curvature of the shell would distort the packing of
ions in different layers. Trapping polymer backbone segments
inside of a spherical shell could also have a high entropic cost,
depending on the length of the segments and size of the cluster.
In our pendant systems, a polymer would not be able to cross
through the shell without placing an uncharged bead in the
shell, though ionenes would be able to cross a shell of one ion
thick. Furthermore, calculations of only the electrostatic energy
of dipoles arranged on the surface of a sphere or in a four
dipole cross section cylinder suggest that a cylinder is slightly
more favorable for large cluster sizes.42

Disk-shaped aggregates seem relatively plausible for our
system. The free energy analysis of Semenov et al. suggested
that disk-shaped clusters would be preferred over spheres or
cylinders.14 In that case ionomers were analyzed as multiblock
copolymers with short strongly attracting blocks. Local
monomer-scale packing and long-range electrostatics, which
are relevant in our simulations, were not considered.
Interestingly, disklike aggregates were observed in coarse-
grained simulations of telechelic ionomers of 64 backbone
beads each that were otherwise similar to our coarse-grained
model.23 The segments between charged beads in our polymers
are significantly shorter, and our polymers have relatively few
(or no) ions on the ends of the chains. Thus, as noted above, in
order for our polymers to place a charged bead inside a flat
surface, a sharp bend in the backbone is required. Apparently
either this entropic consideration or the shorter segment
lengths considered here prevent large disklike aggregates from
forming in our simulations. Earlier simulations using a model
similar to our ionenes at Nbb = 6 showed a somewhat extended
and branched (rather than spherical or disklike) and apparently
percolated aggregate, as is seen in our ionene simulations.24

Aggregate size, the height of the first peak in gci−ci(r), and the
ionomer peak height (to some extent) can be thought of as
measures of the general strength of ionic aggregation. In those
systems with few box-spanning aggregates (pendants at high
enough Nbb), a fair comparison of average aggregate size can be
made (nearly all ions are in structures included in the aggregate
size data, and a single aggregated structure does not dominate).
The three periodic pendant systems at Nbb = 7, 9, and 11 have
somewhat decreasing average aggregate sizes of 41, 31, and 28,
respectively. The average aggregate sizes of the Nbb = 9 random
block pendants and fully random pendants are much larger at
87 and 93, respectively. A free energy analysis by Nyrkova et al.
of associating polymers which assumed spherical clusters
suggested that the cluster size grows as the number of
associating groups per ionic block cubed (where an ionic block
is composed of one or more adjacent associating units). The

Figure 11. Location, k*, of the ionomer peak in Sci−ci(k) for (a) ionene
and (b) pendant ionomers as a function of spacing at σci = 0.5 and εr =
4. The charged bead spacing is periodic (square data points), random
block (circles), or fully random (triangles). Depending on the system,
the S(k) was calculated with a discrete spacing in k space of ∼0.12−
0.13σ−1; thus, this is the resolution of the data points shown here.
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authors noted that due to this strong dependence, if even a
small number of charged groups are adjacent to each other in a
random ionomer, its cluster size will increase.15 The underlying
basis for this prediction that applies to our system is that there
is a free energy cost for each polymer segment sticking out of
an aggregate. In the case of two charged beads adjacent to each
other or a charged bead on the end of the polymer, only one
polymer segment per bead must incur the entropic cost of
stretching away from the aggregate, and the polymer backbone
may not have to bend as sharply. In the case of our fully
random ionomers at Nbb = 9, 25% of all ions are either adjacent
to another ion or at the end of the chain. This may lead to a
slightly stronger clustering ability of fully random pendants and
explain why fully random pendants’ aggregates are slightly
larger than those of random block pendants. However, random
block pendants have no charged beads adjacent to each other
or on the ends of the chain, so this argument does not explain
why both types of random pendants’ aggregates are much larger
than those of periodic pendants. We surmise that the
periodicity along the chain predisposes the periodic pendants
to their special smaller, roughly spherical aggregate morphol-
ogy, and further discuss increased interaggregate bridging in
these systems in the next section. At low Nbb, this special
periodicity effect may become less important, and the ionomer
peak height drops significantly with Nbb for periodic pendants.
The effect of charged beads adjacent to each other and at the
end of the chain increases at low Nbb; by Nbb = 3, 58% of fully
random charged beads are in one of these categories.
Interestingly, the fully random pendants have a significantly
larger ionomer peak than any random block pendants or than
periodic pendants at Nbb = 3. Fully random ionenes also have a
larger ionomer peak than either periodic or random block
ionenes, which are similar to each other. Fully random
pendants and ionenes also always have a larger first peak in
gci−ci than their random block or periodic systems at the same
Nbb (not shown for all systems). This may reflect their adjacent
charged beads and polymer-terminating charged beads which
are able to aggregate more strongly.
Interaggregate Order and Kinning−Thomas Model.

Although all of our simulated systems have some degree of
long-range order leading to an ionomer peak in the structure
factor, this ordering is strongest for pendant ionomers at high
Nbb. We previously proposed that in the Nbb = 9 pendant case,
the long-range peak in g(r) or the ionomer peak in S(k) is
primarily due to interaggregate order set by bridging of
backbone segments between charged beads.25 The primary
peak in the aggregates’ center of mass structure factor
(discussed further below) was shown to correspond with the
ionomer peak. With decreasing Nbb, the pendant ionomer peak
moves to higher wavevector, consistent with the idea that the
spacing between charged beads helps to set the interaggregate
(or in percolated cases, mesoscale intraaggregate) ordering
length scale.
Further supporting this idea, adding randomness to the

charged bead spacing interrupts the interaggregate ordering:
both types of random systems show significantly less long-range
order in g(r) and a broadening of the ionomer peak in S(k)
versus their periodic analogues. To quantify the degree of
interaggregate polymer bridging, we calculated the fraction of
segments between charged beads which connected two
different discrete aggregates. At Nbb = 9 where few of the
pendants’ aggregates span the box, 76% of periodic pendants’
segments are bridges, versus just 38% for random block

pendants and 36% for fully random pendants. This increase in
bridges for periodic pendants is not simply because their
aggregates are smaller. Even for periodic pendants at Nbb = 5
where there is typically a large percolated aggregate and the
non-box-spanning aggregates have a similar size to that of the
random block pendant system, 50% of segments bridge
between different aggregates (including box-spanning aggre-
gates). In general, we expect increased bridging would improve
the mechanical properties such as the bulk modulus (though an
analysis of such properties is beyond the scope of this paper).
Overall, for pendant ionomers, the periodic architecture
increases bridging between aggregates and has increased
interaggregate order versus either random architecture. Note
that for periodic systems, segments looping closely back within
an aggregate and polymer end segments can also help to set the
same approximate length scale of closest approach between
aggregates.
The experimental ionomer peak of these and related

materials can be fit well with the KT model, a refinement of
the YC model.2,4,5 These models propose that spherical
aggregates of radius R1 and number density ρagg with constant
interior electron density (ρ1) exist in a lower constant electron
density (ρ0) medium. Further, these aggregates have liquid-like
order like hard spheres, with a radius of closest approach RCA
that is larger than R1.

2,5 The overall scattering depends on both
the form factor scattering of the spherical aggregates and the
interaggregate structure factor. The total scattering I(k)
normalized by the scattering of an electron Ie(k) and the
volume of material participating in scattering Vs is given by

= ρ ρ − ρ π Φ
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The terms on the right-hand side of eq 5 that do not depend
on k can be combined into a single prefactor to set the overall
scattering intensity, resulting in a total of four variable
parameters. The difference between the YC and KT models
is in the specific form of SHS(k); we use the KT model which
calculates SHS(k) from the Percus−Yevick equation.5 While it is
straightforward to include the effects of polydispersity in both
Φ and SHS, this requires additional parameters and is not
discussed here.5 Depending on the three parameters which
affect the shape of the scattering profile, ρagg, R1, and RCA, the
KT model can yield a sharp peak with a small shoulder to the
right of the peak. The shoulder is clearest in our precise, larger
Nbb systems (the shoulder can be seen in Figure 4 and in the
precise Nbb = 5 curve of Figure 9b at ∼6 nm−1). The KT model
can fit many peaks of the same general shape well, including
our ionene systems at εr = 4. However, at large εr = 10 there are
small, weak aggregates of a few ions each and many lone single
ions, and in that case the KT model does not fit the very weak
ionomer peak well (not shown). At εr = 4, with most of the
ionene’s ions in a large percolated structure, the physical
meaning of the parameters of the KT model becomes unclear.
Without 3D real-space data of ionic aggregates, it has previously
been an open question how well the KT model represents ionic
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aggregate morphology, even for those systems with discrete
aggregates, and several other competing models of ionic
aggregate morphology are in use.1

Figure 12 shows (a) the counterion−counterion structure
factor and (b) the aggregates’ center-of-mass to center-of-mass

structure factor only for those systems with roughly spherical
aggregates of controlled size: the pendant ionomers of periodic
spacings Nbb = 7, 9, and 11. Both the ionomer peak and the
primary aggregate center-of-mass peak decrease in wavevector
with increasing spacing, but the peak heights and shapes are
similar for these three spacings. The best fit of the four-
parameter KT model to Sci−ci(k) is also shown, along with the
hard-sphere structure factor used in the model fit. Fitting the
periodic pendant Nbb = 9 system Sci−ci(k) curve, we find the KT
parameters ρagg = 0.0043 aggregates/σ3 and R1 = 1.4σ. These
values are similar to that simulated system’s aggregate number
density and core size (0.0045 aggregates/σ3 and 1.5σ, estimated
as half the average span of an aggregate in x, y, or z) found from
the cluster analysis. Furthermore, the structure factor from the
model based on ρagg and RCA (2.9σ) is similar to the actual
aggregate SCM−CM calculated directly from the simulations. The
total volume of aggregates calculated from these fitted values of
ρagg and R1 (2500σ

3 per simulation box) is similar to the total

volume that the ions in the simulation box would fill if they
were arranged in an NaCl-type crystal (2700σ3, using an ion
closest approach distance of 0.75σ). For periodic pendants at
Nbb = 11, the KT fit also produces a ρagg, R1, and aggregate core
volume within 10% of those found from direct cluster analysis,
and the KT hard-sphere structure factor is similar to SCM−CM.
The comparison between stoichiometric ionic volume

(calculated as though the ions were in a crystal) and the KT
predicted aggregate core volume is sometimes made exper-
imentally. If the KT model aggregate core volume is smaller
than the stoichiometric ionic volume, this suggests that not all
ions are contained within the aggregates, while if the opposite is
true, one would suspect the aggregates do not consist solely of
ions.2,3 Either case has important implications for the transport
and mechanical properties of these materials. In all of our
simulated fully neutralized systems at relatively low dielectric,
we observe aggregates of approximately crystalline inner density
(without intervening polymer backbone). There are also
extremely few individual ions, or singlets; for any of the εr =
4, σci = 0.5 systems, only 0.003−0.02% of ions are not within
0.9σ of another ion. Given that the vast majority of ions are in
dense many-ion aggregates, it makes sense that the KT model
volume equals our total ionic volume for our systems which
aggregate as proposed in the KT model.
For periodic pendants at Nbb = 7, the aggregates are not as

uniform as they are at Nbb = 9 and 11. The KT model fits
Sci−ci(k) at Nbb = 7 just as well as it does at higher Nbb (the
mean squared error is similar). However, the Nbb = 7 system’s
KT parameters ρagg and R1 differ from its cluster analysis results
by 20−25%, and the KT predicted aggregate core volume is
13% lower than the stoichiometric ionic volume (the volume of
the known number of ions if they were in a crystal).
Hypothetically, an experimental analysis of scattering that
matches the Nbb = 7 system’s Sci−ci(k) may conclude that some
ions are dispersed in the uncharged polymer medium instead of
being contained within the aggregates. Instead, nearly all of this
system’s ions appear to be in densely packed aggregates, but the
aggregates are not exactly spherical and are somewhat variable
in size. In summary, for our discrete, roughly spherical
aggregate systems, the parameters ρagg, R1, and RCA obtained
from a KT model fit do represent approximately the actual
aggregate number density, core size, and interaggregate length
scale of ordering. Therefore, for experimental systems with
spherical aggregates, we expect that parameters obtained from a
KT fit of S(k) are accurate measures of the aggregate
morphology.

■ CONCLUSIONS
We performed MD simulations on various periodic and
random architectures of coarse-grained ionomers including
explicit counterions. We also presented X-ray scattering data for
precisely spaced and pseudorandom PEAA copolymers that
were partially neutralized with Na+. Experimentally, increasing
the spacing of ionic groups along the chain moved the ionomer
peak to lower wavevector and adding randomness in the
spacing broadened the peak and moved it to lower wavevector.
These major trends were also reproduced in the counterion
scattering calculated from the simulations.
Both random and periodic ionenes at all charged bead

spacings considered formed large ionic aggregates that
percolated through the simulation box, although a smaller
percentage of ions were involved in such aggregates at high
spacing, or Nbb. Random and periodic pendants at low Nbb also

Figure 12. (a) Counterion−counterion structure factors (solid lines)
and the KT model fit (dashed lines, least-squares fit to data in the
range of 0.5−2.5σ−1) for periodic pendant ionomers with spacings Nbb
= 7, 9, and 11 at σci = 0.5 and εr = 4. Data points below 0.5σ−1 are
noisy and not shown. (b) Aggregates’ center-of-mass to center-of-mass
structure factors (solid lines) and the hard-sphere structure factor
implemented in the KT fit (dashed lines).
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formed large percolated aggregates. At higher Nbb, periodic
pendants form roughly spherical, controlled size aggregates
with liquid-like interaggregate order. These fit the physical
picture of the YC or KT model of ionic aggregate morphology.
The polymer backbone often bridges between aggregates or
loops closely back within an aggregate, helping to set the
interaggregate order. Adding randomness in the backbone
spacing of charged beads disrupts this order, and random
pendants’ aggregates are larger, more variable in size, and
stringlike rather than spherical.
All ionic aggregate morphologies yield an ionomer scattering

peak. For precise pendants at high Nbb this corresponds to
interaggregate order (and for these cases the ionomer peak is
the most intense), but apparently even large percolated
aggregates have mesoscale order within the aggregate on a
similar length scale. For all types of architectures considered,
increasing Nbb systematically moves the peak to lower
wavevector, corresponding to longer length scales independent
of changes in aggregate shape.
Our focus has been on ionic aggregate structure in coarse-

grained ionomers of various architectures, and we have begun
to study the detailed cluster and counterion dynamics in these
systems. We expect to report insights into the mechanism of
transport and which architectures may best facilitate counterion
transport in a future publication. Further experimental studies
are also underway. We hope to make further specific
comparisons between experimental results on fully neutralized
materials and our simulations.
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Table of additional data for the systems discussed above at σci =
0.5 and graphs showing results of smaller scale simulations for
periodic ionenes and pendants with σci = 0.5 and 1.0 at Nbb = 3,
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